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The role of nonlinear critical layers in

boundary layer transition

By XI. E. (;()LDSTf'ZIN
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Asymt)totie m('thods are used to (leserit)(_ the nOlflinear self-int('ra('t ion t)(qw(_(_n pairs

of oblique instability modes that eventually deveh)ps when initially linear ,_lmlbdly
growing instal)lilly waves evoh'(' (h)wnstream in nominally two-(lim(qJsi()mtl laminar

b(mndary layers. The first nonlinear reaction lakes plae(' locally wilhin a s()-('alhq

'critical layer', with the flow outside this layer consisting of a h_('ally l)aralh'l m('an
flow plus a l)air of (ff)lique instal)lilly waves whi('h nlay or nlny ll()t 1)(, a('('(nllt)n-

tried by an associate(l plane wave. The aml)litu(h_s of th(_se waves, whi('h are ('()nJ-

t)letely determined t)y nonlinear eff(,(:ts wit bin the eriti('al layer, sat i_t'5' (,il h_,r a sin_41('

integro-(liifer(nltial equation or a l)air of inlegro-different ial equal ion,_ wit h qmt(lral i('
to quartie-type nonlitlearities. The physical iml)lieations of these e(tuation,_ are (ti_-
CllSSe(l.

1. Introduction

Transition to t url)ulenee in l)oun(lary lay('rs usually begins with initially linear and

non-interacting instability waves that grow to nonlinear amplitudes as they prop-
agate downstream. Tim first nonlinear stage of (_volution (which might m()r( _ al)-

pr(_I)riat.ely be refi,rred ro as a modal-interaction stage) ix usually eharaet('rize(1 by
the rapid growth of three-dinmnsional disturbances due to resonant interaeti(ms 1)e-

tween instability waves and between instability waves and streamwise vorti('es. This

pheilomenon is usually studied experimentally by artifieially exciting th(, flow wit h
smatl-aml)litude nearly-two-dinmnsional and single-frequency excitation (levie(,s. The

initial unsteady motion just downstream of the excitation device shouht then have

harlnonie time dei)en(tence and be well described I)y linear instability theory. In
most eases, the m(,an flow is relatively two dimensional and faMy eh)se to a Blasius

profile in the h)w Mach-mmff)er experiments an(l to the eorrespon(ting conlpressit)h _

flow in the high Mach-mmff)er experiments. (There are actually very few e()mr()lh,d
excitation experiments at high Math mmfi)ers, but there is some hot)e that this

will change in the near filture.) The instability-wave growth rates shoul(t ther('fore
|)e small comI)ared to the inverse bomMary-layer thickness A -1 at subsonic Math

numt)ers, t)ut can be of the same order as A -_ at sufficiently high suI)ersonie Ma('h

re|tubers (due to the generalized mean-flow inflection i)oint that oecm's in t his ('as(').

However, mean-flow (tivergenee effects will usually cause the growth rate t() t)(' small
(relative to A -l) 1)y the time nonlinear effects set im even in these more unstable

sut)ersonie flows. This is |)ecause. in the latter type of flows, the (,x('ilal ion is usually

located in the vicinity of the peak local growth rate of the relevanl normalized in-

stability growth-rate versus frequency curv(_ such as the one shown sehematicall.v
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Figure 1. Typical linear growth-rate curve.

in figtu'e 1. The growth rate should therefl)re decrease as the (constant frequency)

instability wave i)ropagates downstream into a region where (in most cases) the

botmdary-layer thickness A will have increased.

This suggests that the method of nmtched asymptotic expansions can be used

to tlescril)e these flows: with an 'tinter' nonlinear t'egi(m, in which tile instalfility-

wave growth rate is small, and a much larger 'ollt er' regioli ill which the unsteady

flow is governed by linear dynamics, but in which mean-flow ttivergence effects at'(,

important (Gohlstein & Leib 1988). Once the soltltions in these two regions have been

found, a uniforndy valid comI)osite sohltion that applies (werywhere in the linear and

nonlinear regions (:all })e obtained in one of the usual ways say. by nnfllil)lying the

linear and nonlinear solutions together and then dividing throllgh })y their connt_on

part in the overla t) donmin (that always exists between the inner and outer regions).

Smoke wires and other flow-visualization devices can be use(l to observe the

flow when the Maeh numl)er is sufficiently small. The initial nonlinear (or modal-

interaction) stag(" then l)ecomes visible through the al)l)earance of rows of A-shal)e(1

strtlctllres, which (:all either 1)e aligned or staggere(l in alter(rating rows depending

on the experinlenlal ('on(litious. The unstaggered arrangement, which was originally

observed by Klel)alloff & Ti(tstrom (1959) and Klebanoff et al. (1962), is usually

l'e%rred to as 't)eak-valley' splitting (or K-type transition). It is (as l)ointed ()tit by

Kachanov & Levchenko (1984, § 5.2)) a (:omplex phenomena that is ext)lainabh_ by at

least three difl'erent (relatiw'ly weak) resonant-tyI)e interaction mechanisms each of

which probably played some role in one or more of the many experiments that have

been carried out to study this phenoInena (see Kachanov et al. 1985; Kachanov 1987:

Hama & Nutant 1963; Kovasznay et al. 1962; Nishioka el, al. 1979). A resonant-type

interaction between oblique instability waves an(t weak streamwise vortices seems to

have played a dominant role in the original experintents of Klebanoff & Tittstront

(1959) and Klebanoff et al. (1962). However, Stewart & Smith (1992) propose a differ-

ent mechanism that seems to be in good agreement with experimental obserwtliotls.

The staggere(t arrailgen_ent, which tends to predominate at lhe lower excitation

levels, is usually associated with a weak n(mlitleal'ity resuhing fl'om a resotmnt-tria(l
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interaction |)etween a pair of oblique subharmonic modes (whi(:h, in mos! ('ast's, ori_-

inate(l fl'om the l)ackgroml(t distm'l)allCe enviromncnt) with the basic flm(lamt'ntal

two-dimensional mod¢, g(merate(l by the excitation (|evict. This type ¢)f intt'raclit)n

was originally analysed for Tolllnien ScIdichtingg-tyt)t' (i.e. vist'ous-tyl)e ) instal)ilitit,s

t)y Craik (1971) and subsequ(mtly by many ot.h('rs Wilt) llS(!([ finite tl('ynol(ls-mmfl)cr-

type approaches and recently |)y Smith & Stewart (1987) who used asymptotic m('tll-

ods. (However, sec Khokhlov (1994a) and the (li,scussion section of \Vu t_t (d. ( 1!)9-1). )

Moreover, there arc now a nmnber of careflflly (:ontrolled ext)eriments (KacllanOv
et al. 1977; Kachanov & Levchenko 1!)84; Saric & Thomas 1981; Saric ctal. 1984:

Cok(' tk; MaIlgano 1989) that basically veriilv t.ile resonant-triad mec]mnism, but t}lc

obscrvetl growth rates tend to |)e nluch smaller than those l)rcdicted ])y thc finite
Rcynolds-mmlber theories (Khokhlov 1994b).

Craik (1971) propos(,(1 that the resonant-tria(t i41t(,raction could also play a role ill

the aligned or K-typ(, transition, but with the interacti()n taking l)lac(' bctw('('n a pair

of o|)lique mo(tcs at the forcing fr(_qucncy and tilt, small tw()-(lim(msi(mal instability

mode that is invariably generated at the first harm(talc of this fl'('qu(,ncy (s('(' !i 5.2

of Kachanov & Levchcnko (1984) for a more comt)lete discussion of this issu(,). All
of the relevant too(los could theu I)e g(m(q'ate(l })y Ill(' excitalion (l(wi('(, au([ would

not have to emanat(_ fl'om the t)ackground distm'l)anc(, (mviromn(mt. How(w(,r. th('

analysis could not i)redict the observed gradual transition fr(lm a two- t(i a thr(,e-

dimensional flow structure mflcss the (common) amI)lit u(t(' of [h(, ()l)liqu(, mo(tes w(q'('

al)le to cxcee(t that of the two-(tim(msional flm(lamental an(l, ('ons('(tu('nI ly. thai ()f th(,

(usually much smaller) first harmolflC that ('auscs the (,nhauc('(l growlh of t h(, ()l)liqu(,

too(los. This b(,haviom" would obviously l)e favom'c(l if th(' o|)lique m(/(t('s wcr(, mml)le
to sut)I)r(,ss the arovth of the first harmonic m_til they thcmselv('s l)('cam(, very large

because this would allow the ol)lique modes to (:out inue their rapid growth mltil

they 1)('(:am(' larger titan the more slowly growing two-dimensional too(l(, g('n('rat(,d

at th(' forcing fl'(_qu(,ncy. As shown below, the t)res(mt hi_;h-R('yn(ll(ls-mmfl)er t h('ory

actually ('xhil)its this b(_haviour, hi any cv('nt, this latter mechanism l)r()hably t)lay('(t
an important role in t h(' r('c(mt l)cak-vall(T splitting ext)(q'im(mts of Kachanov (1987)

and Kachanov _t (d. (19_5) but may not hay(' l)c('n v('ry signiti('anI in the original

Kle|)anoff ('xperim(mts.

2. The outer linear flow

We first (:onsi(t(w the initial linear rcgi(m just (lownstream of th(' excitation device

wh(we the instability waves are still small enough so lhat no significant modal in-

t(wa('tions take l)lac(,. At supersonic Math munl)('rs 1)(,low al)out 6 or so where

the s()-(:alled first-too(l(, instability is dominant (Mack 1984. 19S7), t he most rapidly

growing too(los arc ohli(lu(' instal)ility waves, and t h(' first modal interaction to take

t)lac(' would probably bc the sclf-int('racti(n_ |)('tw('en symmetric t)airs of oblique in-

stability waves (Leib & Lee 1994). In which ca s(,, it is al)l)rol)rial(' to sUt)l)OS(' tha!

th(' unst('a(Iy tool|on is initiated from a t)air of o|lliqu(, (equi-anq)litu(t(_) instal)|lily-
wave too(los wit h the same strcamwise wave mmd)(q" _t,. and scaled angular fr(,qu('n('y

_'tSl/U-_ = (h.G and equal and Opl)()sit(' sI)anwisc wave mm_b(,rs (:t:3). (U_, is th('

('hara(%(wistic vel(l(:ity of the flow, and t h(' sul)scril)t r is used 1() (t('n()t(' Ill(, real part

()f the wave mmd)('r _ and th(' l)has(' Sl)(,ed c. as well as all oth('r (tuant iti('s t() whi('h

it is aI)i)('u([(_(l.) Th('s(' two wan_es ('oml)inc to f(lrm a s|;m(tin_4 wav(' in |he Sl)anwis('

(lir(,('li()n that l)rOl)a_4at('s only in l tw (lir(,(qi(m of fl()w which is ill(' situalion thai

Iq_d. 7)_.'_. II. 5'm:. L_d. A (19!15)
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most fi'equently occurs in wave excitation exl)eriments that typically involve hmgish

excitation d(,viees placed l)('rl)endicular to the flow.
The two-dimensional mode usually) (,xhibits the most rapid growth a! subsonic

speeds l)rovided, of course, that the mean flow is sullieiently two dimensional. How-

(,v('r. ('v('n very weak spanwise periodic mean-flow distortions (i.e. streamwis(' v()r-

tices) can cause al)i)r()i)riate oblique modes to grow faster than tlt(, plan(' wave at
the high lhwnohls numb(,rs being considered herein. This eouhl (>(:cur, for example

(Golds)('in _v \Vun(h'ow 1994). (hrough a kind of res(mant-interaction mechanism

that was first considered by Nayfeh {1981) and Nayli,h & AI-Maaitah (1988) and

lat('r appli(>d to Gih'tler vortices l)y Hall & Sed(hmgui (1989). In which case it. wouhl
again ])e approl)riat(' to initiate the re)steady motion from a ))air of oblique waves

()f (h(' (yp(' deserib(,d above but with the growth rates equal to the Imram('tric

growth ral(,s given in Gohtstein & \\qm(h'ow (1994). Bul. (w(,n wh(m no str('aInwis('

vortices arc present (()r when they al'e veI'y weak) and the ix)calf flow is efl>ctively
two dimensional, th(' oblique mod(,s can evemually exhibit th(' most. rapid growth

(lu(' to a Imrametrie resonant interaction with the plane wave that exhil)i(s th(_ most

ral)id growth in the inilial linear slag(,. The oblique modes can then l)eeome large

enough to i)l(('ract t h(,nxs(,Ives nOlflinearly Ul)On passing lhrough the parametric reso-
nance interaction stage, which can be treated sinmltan('ous]y with the self-interaction

stage if w(, initiate the unsteady motion from a resonan( triad of instabilily waves
it) tit(' initial linear r('gi()n a plane fmMamental-frequen(3' wave. with scaled angu-

lar fl'equ(m(:y 2wtA/(_;-, . and a l)air of oblique e(tui-alnt)litude sul)harmoni(' waves,

(again) with the same st.r(!alnwise way(' number and angular frequency, _,. and ,,.c,.,

rest)('ctively, and equal lint. opposite spanwise wave nun|l)ers ±i:¢. In this case, the
term 'resonmlce" impli(,s, among other things, that the thre(' waves all have the sam('

phas(' Sl)('('(l ('... This occurs (for th(' small growth rates and large I/eyn()hls lmlnl)(!rs
that are of interest here) wllell

/4 = v/3eb., (2.1)

which llX(,alls that the oblique instability waves make a 60 ° angh, with the direction

()f HOW. \\'(' ('Sill, Of COlllSe, allow this angle to be arbitrary in lh)ws where an oblique

nlo([e (:all g;X'oW lnore rapi(lly than (he I)lane wave an(t r('sottaIxt reaction with tit(,

latter is n()l re(tuired t.o enhance the growth rate of th(' former.
Our ('h()ice of th(' initial linear ln()(l('s may, at first, s('(qu som('whal artifi('ial, ])u(

the linear and t)aram('t tie resonance stages act an narrow l)an(l filters that are able 1o

st'lee( oul these (listm'l)ances from relativ(qy generic |)ackgr(mnd (listurl)anc(' fiehls.

M()r(,()v(,r, w(, (,vemuaIIy show (at the end of !i3) (hat the resonance condition (2.1)

(h)('s n()( hay(' t.() l)e satisfied exactly and that the r(!sults actually at)ply t.o a fairly

broad rang(' of wave mmfl)ers about the resonant condition.
It is (rely 1)()ssible to deveh)p a systematic asyml)tot.ic theory of these phenom(ma

when the tReynohls number Rc in assumed to be large. Then. stile(' we also require

that th(' instability-wave growth rates l)e small in t.he nonlinear region of the flow,

the initial modal and nonlinear interactions will t)e confined to a h)calized region

eent.re(t around the '(:riti('al hwel' (Lin 1951), where the mean-flow veh)city, say U,.,
is equal t() the common phase v(qocity c,. of the two or three modes (ha.t interact

t,h('re (set' figltl'e 2). This occurs ])(,cause tit(! flow lltllst t)e lxearly st.ea(ly in a referent'('

fram(' moving downstream with the phase v(,locity c,. at the small growth rat.(>s being

t Sl(,wa)'l ,k- Smil h (19s7) show )hal mm-paralhq )low efl'(_cts ca)) som(,lim(,s caus(e lh(' obliqu(' n,odcs

to grow faster than th(' lw(>-(lim(,nsional m()d(,.

Phil. Trans. II. 5;oc. Lo**d. A I1!)!)5)
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eonsidere(l herein, and. the corresponding mean flow is then equal to zero at t h(,

critical layer t)y definition. There in, therefor(,, no mean flow to linearize the analysis
about in this region, an(] the nonlinear and/or modal interaction effects will then

come into play at the lowest possible or(ter of approximation there. This explains

why energy exchange between resonant modes (which share a common crit ical layer)
in much more efficient than between non-resonant mo(les.

The flow outside the 'critical layer' is still governed by linear dynamics, which

means that it in either (a) still given i)y a locally paralM two-dimensional streamwise

Ill("_qdl [J()_V, SR.V _.;(./]), OI" perhal)s (ill the case where the wavelength scah' factor (_, is
<< l) a nearly two-dimensional st,reamwise mean flow, say U(!I)+cr4Uo(g, 2Z), t)lus a

pair of ol)]ique instability-wave mo(les or (b) in given i)y a locally l)aralh,1 nlean flow

U(y) plus a I)air ()f oblique instability modes accompanied l)y a first harmonic plane

(i.e. two-dim(,nsional) instal)ility wave. The (external) transverse veh)city fluctuation
_, in then given (in the general comt)ressit)h_ case) l)y

,, = ecr(_ Re[see 0A(:r0)4)(5,)e ix cos Z + (e/cr)l/:_Ao(x(.)4).(y)ei2X], (2.2)

where

X = cr(_.(x - trot), Z = cri_z, (2.3)

[ ((1 +-A)cre )'/_1 [ _ _e t,/:_] }
(2.4)

:.,, = (2.5)
the scale factor or _ 1 has to be inserte(t in order to simultaneously cover the O(1 ) an(t

long-wavelength cases, 0- tan I(ig/(_), and /?e denotes the real part. The stream-

wise, transverse and spanwise coordinates, normalized l)y the t)om_dary-layer thick-

hess A, are :r, y and z, respectively; t denotes the normalized time, and 0 denotes the

t)rot)agation angle of the oblique mo(te (which is equal to _Tr when th(, oblique modes

are r(,sonant with the plane wave, but in otherwise arl)it[ary). The scaled st)anwise
wave lllllIlt)er, streamwise wave llllllll)or 0AI(I [)h_/se st)ee(t/_, o_ _tll(t (', resI)ectiv('ly, are

I)urely real.

The first term on the right-han(t side <)f equation (2.2) represents the ot)li<lue
mo(les, while the second term represeilts the l)hme wave. 4) and 4), are the linear

normal-mode shal)es which can, in general, l)e forum by solving the appropriate

ttayleigh's equation (but see below). A an(l A., which del)end only on the streamwise

l)hil. 7'r(l_.s. 1£ Soc. Lond. A (1995)
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coordinate (and then only through the scaled streamwis(! variable .r[j, which varies

on the length scale of the nonlinear region which, not very sm't)risingly, turns out to

be the reciprocal instability-wave growth rate) determine the overall growth of the

instability waves and are_ therefore, the most important quantities in these equations.
They are comph_tely (teterntined by the nonlinear dynamics within the critical layer

and are, in practice, found by equating the velocity julnp across the critical layer, as
calculated from the ext('rnal linear solution (i.e. the solution to Rayleigh's equation)

to the velocity jmnp calculat.ed from the internal nonlinear solution within the (:ritical
layer, e and e(e/0.) 1/3 are tit(' amplitude scale factors fiJr the oblique and plane waves,

rest)ectively, where ( is always much less than a.
Notice that the growth-rate an(t oblique-mode amplitude scalings o((/0.)1/3 and

e, respectively, are related. This relation ensures that linear growth and nonlinear

(or modal interaction) effects will both impact the external linear sohltion at the
same asymptotic order. It is dictated by the requirement that the nonlinear stage

correst)ond to the first stage of evolution heyond tit(' initial linear region, i.e. that

the nonlinear solutions match onto the upstream linear sohltions in the matched

asymptotic sense. The Benney Bergeron (1969) parameter A --- 1�ca 3 Re, where Re
is the Reynolds nunlber based on the boundary layer thickness A, is (in the present

context) a measure of the relative importance of viscous to growth-rate effects within

the critical layer, i.e. these effects will be of the same order when A = O(1).

The wavelength scale factor _ can be set to unity when the initial linear instability
w'ave has order-one wavelength as is usually the case in supersonic flow's with

sufficiently high Math numbers. Then the linear instability-wave growth rate will be

O(¢ l/3) (Goldstein & Choi 1989) as the nonlinear region is approached (which fixes

the location of this region).

For the asymptotically more stable flow's, such as subsonic boundary layers with
sufficiently small adverse-pressure gradients (= O(_2)) or with sufficiently weak

spanwise mean-flow distortions, a will be snmll comt)ared to unity, and the lin-

ear growth rate will scale like 0.4 over most of the
1992: Wtmdrow et ,l. 1994; Goldstein & Wmldrow

effects will therefore conic into play over most of

near the neutral curve) if we take

mlstable region (Goldstein & Lee

1994). The nonlinear critical-layer

the unstable region (and not just

(7((/(7) 1/3 -- 0 "4, _.vhell _X= O(1), 0.(e/,,X0.) t/:_ = cY_, when _X--, _c. (2.6)

And for even more stable flows, such as accelerating boundary layers (Reid 1965: \Vu

1993) with O(1) pressure gradients, the growth rate will be 0(0. 2) over the main part

of the mlstable region. In which case, the nonlinear critical-layer effects will come

into play in lhe nmjor portion of this region if we take

= 0., a (2.7)

Finally, we note that the phase speeds of the oblique and plane-wave inodes, c and

co, respectively, will only be equal (i.e. resonance will only occur) if a and i) satisfy

(2.1), or equivalently if (_ and 3 satisfy (2.1) to within order 0.((/(1 + A)0.) _/3.

3. Critical layer dynamics and the amplitude equations

The lowest-order critical-layer equations turn out to be linear and (in the most gen-

eral case) correspond to a balance between growth (i.e. lion-equilibrium), mean-flow
convection and viscous-diffusion effects. The nonlinear and modal interaction effects

Phil. 7}'an,s. l?. ,b'oc. LoT_d. A (1995)
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are weak in the present description, which means that they do not affect the low-

est order equations, but enter only through inhomogeneous terms ill a higher-order

problem. This ultimately implies that the scaled oblique-mode amplitude flmcti(m A
can be determined fl'om a single amplitude equation or that the amplitude functions

.4 and A0 can be determined from a pair of amt)litude equations depen(ling on

whether or not the tmrametric resonance stage plays a role in the iilteraction. In

the former case, the relevant equation corresponding to the generalize(l scaling (2.3)

through (2.5) ix given by Goldstein & Choi (1989), Wu st al. (1993), Goldstein &

Wundrow (1994) and Leib & Lee (1994) as

(tlI" fi'0_4(:F1 )_A(:i"2)'4" (:r l -}- '_r2 -- j') (tf2 (t2:1' (3.1)

• oc , oc,

arM, in the latter case, are given by Gohtstein & Lee (1992, 1993), Wu (1992),

Goldstein (1994) and Mallier & Maslowe (1994) as

dA(:_,) _ _-A(:z.)+ i KoAo(._:,)A* (2:_.,- :_.)d_-,
(tJ" , _,

f/li+i_ R_/:_A(:,-, _ -* • - :_,)d:,,._d,_, (32))A(2:2)A (21 + 2Y 2

d - "yc ,

×k(2_-, + :,,_ - 2._.)+ i%A(._,)A0(_,_)A*(.,,, + 2.,,_ 2:_-)1d.r_d_,,

///ifl+it5"}'" Ka :rl :r2 :ra)

× A*(.r, + z2 + .r:_- 2:_:)d:r:_d.r2 d_',. (3.3)

where the asterisks denote complex conjugates; 2, A aim A0 arc suitably renormal-

ized, and shifted variables corresponding to z0, A, and A0, respectively; and D and

5 are complex parameters which are dependent _1 the basic mean flow. The real

parameter t_ represents the linear growth rate of the oblique mode, or the resonant
growth rate of this mode when there is a sufficiently strong spanwise distortion of

the mean flow. The real part of _0 is the scaled linear growth rate of the plane wave.

Its imaginary part. t?a, t20i, accmmts for the initial wave-numlmr shift between the

oblique and plane-wave modes.
Notice that these are integro-differential equations of the type first proposed for

Rossby waves by Hickernell (1984), rather than the usual ordinary differential equa-

tions of the classical Stuart Watson Landau (Landau & Lifshitz 1987) theory. The

integrals arise froin upstream history effects that produce a gradual phase shift-

ing between modes when the nonlinearity takes place within a ilon-equilibrium (or

growth-dominated) critical layer. This occurs because the evolution or growth effects

have a dominant (i.e. first-order) effect on the flow within the critical layer, but only

weakly affect the flow outside the critical layer. The nonlinear (or wave-interaction)
terms are therefore influenced by the growth effects when they are generated within

tile critical layer, trot not when they are generated outside the critical layer, as in

the classical Stuart Watson Landau theory.
The nonlinear kernel functions/_'o, Ko and K1 /(a will be discussed sut)sequently.

Phil. Trans. R. Soc. Lend. A (1995)
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They turn out to be simple polynomial flmctions of tile streamwise (and corrcst)oml-

ing integration) variables ill the inviscid limit A -_ 0, and in the general case involve
integrals of cxt)onentials and polynomials of tim streamwise coordinates. /_'0 (_xplic-

itly depends on the obliqueness angle 0 and Ix'_/:_ =_ fx'o=_/:_.

Classical Stuart Watson Landau theory Sul)presses the critical-layer effects
which can only be justified when the Reynolds mmd)er ix assumed to tm suflicic_ntly

small. For inviscidly mlstable bomMary layers, this assmnption is inconsistent with

the locally parallel flow approximation (Huerre 1980; Huerre 1987; Goldstein & Leib

1988; Goldstein & Hultgren 1988). For high-lReynold._-numbcr viscously mlstable
boundary layers, classical weakly nonlinear theory is restricted to a rathor smallish

region in the vicinity of the lower branch of the neutral stability curve in which case,

the size of the upstream linear region would have to bc exlr(,m(dy small. Moreover,
nonlim_arity usually occm's in the vicinity of the ut)p(,r branch of the' nmltral stability

curve in most of the r('l('vant t)oundary-layer experiments (Man kbadi et al. 1993).
To be consistent with ore" requirement that tim solutions ovolve froln an initially

linear stage, the amplitude equations (3.1) or (;1.2) and (3.3) usually have 1o be

solved sul)jcct to the upstream bomMm'y conditions

-_t --' a(°)c _s, -40 _ e _:";, as :_' _ ,c. (3.4)

so that th('y match onto the linear small growth-rat(_ solution flit Ul)strealn, or that

ttwy match onto the at)t)rot)riate r('sonant gr()wt.h-rat(' s()lution when sl)amvis(_ dis-
tortion efli,cts l)lay a rolo however, seo !i6 below for an important (,xceI)tion to this.

Notice that only the first term on each of the right-hand sides of equations (3.2) and
(3.3) contributes to these equations when .4 and A0 are sufficiently small as they

ar(_ initially and that (3.41) is then an exact solution to th(, resulting equations.

VQ' inclu(l(' the linear wavo-mlnd)(,r shift k0i to alh)w fin" an appropriat( _amount of

wave-remit)or (l(,tulfing in the analys(_s, which moans that r(,sommcc (2.1) does not
n(_cessarily have to t)o ('xact an(t that the analysis actually apl)lit_s to a relatively

broad wavc-mml])er i'ang(_ about this resonance condition. And even more gen(_rally,

we could tno(tit)_ ('(luali()IlS (3.1) (3.3) to im:lu(l(' wavc'-i)a('k(,t (qI'(,cts, as in Hu(ww

(1980). Smith & Stewart (1987), Smith & Bowh,s (1992)and \Vu et al. (1994) but
in the imer(,st of siml)licity, we (to not pursue this issue h(,ro.

When at)l)licd, for exampl(', to a(lv('rs('-I)r('ssurc-gra(li(ult I)omMary lay(u's, t h('

solutions to equations (3.2) and (3.3) ar(" not uniformly valid in fi'equency as
A_'t/U-, --_ 0. This is t)(wause ttmre ix a viscous Stok(,s layor at the wall that ('ven-

tually contribut('s a t('rm

(o'.?U'?

where U,( ix the Blasius skin friction, to the scaled lin('ar growth rate k0 when A,_ /(,._
bccolneS sufficiently small. However, t h(, relevant solutions can easily be mad(? uni-

formly valid fl)r all frc_(lU('nci(_s (('xc(3)t in tlw immectiat(, vicinity ()f llw low(,r branch)

t)y simply rot)lacing t h,, i'ol(,vant lin('ar growth rates (k aim i(_ in (,quations (3.2) and
(3.3), I'(_st)('ctiv(qy) by

;" _ _ + 5 (@,),/:,[I_(2_,tn/u_.),,],..-"

(crcl _l _2
x ',' -"c

[_'(, ---, h'(, 4- (f/o.),/3[ 2/_,((2w, in/U_c)5]l 2.

(3.5)

Phil. Trans. fL ,S'm'. Loml. A (1!)!t5)
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4. The mean-flow change

A .'..,i_,,,iti('ant t_'alm'e of th(' 1)resent hiKlM'_cvn,,. ()ld.'-.-numl)er abl)roauh i.', lhal lhc

i,onlin(,m <'ril iu.l-lav('r inl('racl ion pr()duc('s a Sl)aW,',ise-varial)le m('au-ftow uhanKe

u -- ¢ t{e/i()(!/..q>)( '2iz. (L l)

(l,a( is of)he s;l,,,(' order as 1.1,(,ol)liqu(,-m,)de instability wave (.'.ee equation (2.2))
l lu,l ini( i.llv l)r()du('('s the iulcracl iol_. I t(:,vev('r, the ass()ciald ur(),..s-[lov< velouit ie.'-,

t' -- :r,'(r/::r) I/:_ l{e u,(! -'iz. .' -- _((/:T) 1'/;_He W(I('ziz ('1.2)

lm'n <)lit t<) ])(' S(m,('v:iu,I snm]](,r that, 1}lis.

lu 111(' r('nminder of (he pal)('r, w(, disuu,,,> (he i]_q)lications of lhe fmldanlenlal

('quati()ll_ (3.1) (2,.3).

5. The pure oblique-mode interaction

\V(, I)(,_,iu by ((msi(i('rin_, lh(' ('as(' wh('r(' only lh(' ()hli(lu(' m()(l('s ('nl('r ira() the

iul(,,'a('lio_. \V(' hay(' s(,(,n (luit (his situation is r('l('vant t() sul)('rs()ui(' t)om_dary

lav('rsm_(l 1() suhs()ni(' th>ws wi_h ._uffici(,nllv str(>n_; slreamwi,_(, v()rli('(,s, h should

lhcr('f()r(' t)(, I,i_hly r('h'vant 1() lh(' ()ri_i_ud Kl(,h;m()K ¢'1 rz/. (19(i2) ('×l)('rim('n( (i.('.
K-lyl)(' t rawdl i(m ).

Th(' ('()_m,m pl)liqu('-m()([(, ami)litu(l(' is now (M('r)nin('(t l)y e(tuali()n (3.1). Its
k('r_,('l tm,('l i(,u h, is r('l,liv('lv ('()ml)li('a(('(l wh('n vis('()us (,tf(,('ls are r(qain('d, as in
\Vu _t :d. (19!)3). I)m in th(' invis('i([ limi( ()ri_imdly (x)nsi([('r('(t 1)v G()hlst('in & Choi

(19S!)) mid (',()l(lst('iu X" Vfm)(h'()w (1994). it is simply

/L _,,,-0,.,,_20(.;..,,)I(./-.,, +(._ .,., ,.,>_:_0(.;.-.,._,)(.,.1 .,._)]. (5._

l)r()vi(l('(l (hal cr << 1 in lh(' ('as(' w]i(,r(, str(,amwis(, v()rti('(,s l)hLv a role. \Vm_(h'ow

,_,"('.()ldsl('i,, (l!)!)l} als() ('onsi(h'r('(l the slr('amwis(, v()r(('x l)r(>l)l('m in (h(' ()r(h,r-()n(,

wav('l('n_th, i.('. the rr l limit. Th('y show that lh(' inst+tl)ility-wav(' aml)litttd(, i_
sli]l _;iv('n by (3.1), l)r()vi(l('(l the t,)nlin('ar k(,rnel fml('li()ns is taken to l)(, a slight

_,('u('ralixa(i(),, ()I' (5. l ).

I(, vanish('s wh('n 0 - _ 7_, and the iuvis('i(I solu( ion lo (3.1) (t('v('lol)._ a singularity
;_1 a [inil(' (I()wnn(r(,mu l)().Mli(m (G()hl._t('in & ('h()i 1989), say .r,, at all olher angles.
..I )])('r('l()r(' ('×hil)ils ('xl)l(Mv(, p;r()w( h at 5r,, with the lo('al asyml)lc)tic h(,havior l)(,in_

_,iv(,n I)', ((;()l(ls(('i_, & (lh()i I!)8!); Shukhm;m 19!)I)

:I (/................... . as :_'--_ .h,, (5.2)
(.L, - .i'):_+ i,:>

wh(')(' lh(' r('a] l)ara)))('l('rs ¢t and 0 at(' r('lal('(] l() the original l)aram(,l(,rs L and

lh)'<)uKh (lua(h'al_u('s. l:i_m(' 3 is _ l)l()( ()f ih(' scaled aml)litu(](' flmt'ti()n versus th('

_.(';,I(,(I str(,mi,v<is(, ('<)()r(lina((', as ('al('ulat('d mmwrically from ('(luati(ms (3.1) and
(5).1) ti)r () 1.2 and vari(ms values ()t" 0. Th(' ('mv('s sh()w lha( th(' ,_()lulion initially

l'()lh)w>, l l,(' li)war _r()w(h ('()rr(',,,l)ondin g l()

dA
- ;-,i. (5.:))

(15'

an(1 lhal Ill(' ('xt)l()siv(, _r()wlh ()('('m'._ v('rv sudd(,nly ou('(' n()nlin('arity ('(>m(,s into

l)lay. Th(, (lasl,(,(l ('_(r\'(,s are (h(' h)('a] asyml>l()li(' ('Xl)ansi(ms (';d('ulal('d fl()m (,qua-

l i(),, (5.2). Tiffs r('sul( implies (ha( lh(' ()v('rall wav('-mmfl)('r/.Kr()v,'lh-ral.(' scaling is

I'hd. "l'_.n_. I: .q,.. I.:,nd. :\ {19!)5)
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Figure 3. A 1)1ol of th¢_ scaled aml)lituch' againsl the scah_d st r_amwis_' COOl'climate: (a) 0 - 15_';

(b) 0 -- 30c': (c) 0 - (i(}:_: (d) 0 - 75 ° . Solid lines: mml(,ri(•al s(,lulions: doll(,d lin(_s: local
asymptotic solutions (t}'_ml \Vu cl cal. 1993}.

preserved right Ul) to the singulm'ity when cr = 1, whi(:h moans that the overall

asymptotic struetm•e remains intact mill[ the instability-wave amplitude becomes

0(1) everywhere in the ttow. and that th0 motion is then govoi'n(,d by the' full non-

linear Euler eqmltions in the next stake of evolution.

However. the growth-rate amt)litu(h, scaling is not 1)r('s(_rv('(t in the long wave-

length limit c_ _ (1 (('orr(,sl)onding to, say, the weak stroamwis(, vort('x-amI)litication

mechanism). In this case, the critical layer ext)an(ls to fill th(- inviscid wall layer that

sm'romMs lh(, critical layer, causing the flow to 1)(,('()too fully noldin('ar whih, th(,

instability aml)litu(h,s are still small. The next stage of ('v(dution is then character-

ized t)v a thr(,e-lay('r structure and is gov(wn(,(l t)y th(' t lm,(,-(lim(,nsi(mal mlsteady

'tril)le-d(,ck" equati(ms, t)ut without th(' viscous l(wms (C()l(lst(,in & L('(_ 1992). This

(loes not, how(,ver, imply that th(' rel(,vant scaling is the usual triI)h'-d('ck scaling in

this stake•

-Wu et al. (1993) showed that explosive growth also occurs in th(' viscous (:as(,

and that the lo('al asyml)t()ti(' b(,haviour in th(, vicinity of th(, singularity is still

given l)y (5.2). Howev(,r. they also show(,d that (as in Gol(lst(,in & L(,il) (1989) and

Left) (1991)) ther(, ix a certain rang(, ()f parameters whore ('xl)h)siv(' growth does not

occur wheu th(, viscous 1)aram(,ter A ('x('eeds a certain (usually very large) vain(,• Th('

instability wave will then r(_a('h a l)(,ak amt)litu(h, at sore(' fix(,(I st r(,amwis(, localion

and sul)se(tuently m_(h'rgo vis(rous (t('('ay (lownstr(,ant (d' that point.

6. The parametric resonance interaction

Now SUl)t)()s(, that the s('ah,(l ()l)li(tu(,-mod(' amI)lil u([(' :t is v(,ry small and remains

that way during tit(, (,ntir(, r(_s(manl int(,raetion. Noti('(' that this itLcluth's tit(' ('as('

A = O(e/cl) _/:_. wh('r(_ lh(' (d)lique mode has th(' sam(' aml)litu(h, scaling am th(' plan(,

wave (am was originally 1)()inted out t)v Gol(lst(qn & Leo 1992).

The last term can 1)o n(,gh,('ted on th(' right-hand side of (,(tuati()n (3.2). which

t)hil. 7'r¢lTcs. 1¢. ,'4oc. L.t_d. A (1995)
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thell becolnes

/J:
¢L4 _ 7:.4 +i f(0.4(}(:r, >.4"(2w, -Jr) d:cl. (6.1)
(L? . _

while the plane-wave amplitude equation (3.3) reduces to the linear growth-raW

equation

d/l{)
koAo, (6.2)

dY"

which merely reflects the fact that there is no ba.ck reaction of the ol)li(tue mode

on the l)lane wave. It. may seem rather surprising that this occurs even when the

oblique-mode alnplitude is much larger than that of the plane wave, but the critical-

layer velocity jura 1) that would produce back reaction at this level turns ()lit to be

identically zero. It. is worth noting that the back-reaction effects would have to l)e

quadratic in the oblique-mode amplitudes if they occurred at the equi-amplitude

stage.
Since the second member of the oblique-mode equation (6.1) is now linear in ,4,

we refer to it as the parametric resonance term. It.s kernel flmction, which was first

given in Goldstein & Lee (1993), is

K{I= - :< )2exp(- -., , (6.3}

where A is a suitably renormalized parameter corresponding to 2. Goldstein & Lee

(1992) give an analytical solution to (6.1) through (6.3) for the inviscid limit X = 0

and \_,Smdrow ct al. (1993) extend it. to the viseous case where A = O(1). These

solutions show that the oblique-mode instability-wave amplitude can be represented

|)y aIl infinite series of terms each of which exhibits exponential growth. They also
show that .4 tends to be dominated by tile lower-order terms at small values of .?,

but that the higher modes rapidly come into play and the 'infinite tail" of the series

eventually deterinines the behaviour of the solution at large values of 5'. This leads
to the conchtsion that

" arg i,4o) exp(_OrS"/5) exp (:iAo) d:? as :?" ---+_c,,4 "_ (:{}exp( =_I

provided that the shifl, ing of the coordinate is correct to O(cr) in the long-wavelength
limit, where (T << 1 an(t g-= 4-5_0. Here, 5"0 is a shifted coordinate corresponding to
5', ('0 is a real constant, and A0 is given by equation (6.2).

Notice that K0 (as given by equation (6.3)) becomes highly concentrated around

:? = z, in the strongly viscous limit:

2 --* oc., with _ _= At/3K = O(1). (6.5)

Equation (6.1) therefore reduces to tile ordinary differential equation

dA
3. " ^* (6.6)

d:i"

where

5" = X-'/:_5 ", A - X-1/:_A, and A0(5") = X-2/3/t,}. (6.7)

The limit (6.5) corresl}onds to (among other things) the flat plate or Blasius boundary

layer, i.e. the flow in which the resonant-tria{t interaction was first analysed by Craik

(1971). In fact, equation (6.6) is within a constant factor of the equation obtained by

Phil, Trans. R. Soc. Lend. A (t995)
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('r_li],: (1971). v,h¢_ us_'<l <'_nlxenliomd .'qlum't \\arson, Lanttml llworv (_lll;_tll 196(k

\\;_ts_m l!)fil): l._n_l_-m L [Slshitz 19s7) toge'th_'r wilh finite I't/'yllohls-lmml>t'r-tyl,'

ar/m,culs to dc,iv_' his rt'su]l. Tlw (._,rrt,spondin_ limiti]J_ I',_rm of the gt,ueral plane-

wave aml)lil mh' cqllal it)it (3.3) is still the linem' e(tuali_m (6.2).

Virl,mllv all sul>llar,,,_,nic transition eXlWriments have l)een carril,d oul in fiat-

t)lal_' 1J_mn_lmv I_,',ers wil h very-low frt'e-Stl'CalU Nlach n, nt,tn'rs _,_ Ilia! lhe l_lasius

b, mn_hlry-layt'r s()luli_m I>r,)vides au apl)rOl)riate descripl ion _7I Ill(' meau [love. The

;_lul>lit udc/g]owl h-raI (' sca]iu}, for lint,at insl abilitv wavt,s in I 1,' major llorl ion of 1ll,'

unstabh' llt,yn_fl_ls-munlwr range is lhen g;iven 17v ('quali_m (2.6) and as shown. ]Lr

_'Xalullh'. llV lh>d<myi L- ._nlith (1981) and Gohlstt'in ,:! ,d. (l!)S6). /7, - O(rr I,,) ,ttt_l

2_'iA:l ". ()(er e ) in I]lis l,_lll._( '. Iu whivh cas,', it follows from t'qltatiOll (2.6) till(1 Ill('

_h'Iinit ion (ffA that e -: e cr I'' _-Illtl ,_ -- a ://2, alttl, l lwl_'l'ore (ill vi(!w of ('¢tllati(/lt ({J.5)),

t }l,_lt 17()t h t tTlllS i71l lilt' l'ig}tl-ll._llltt side of equal i_)lt (3.5) are (Tf tile .q_llllO (ll'([(_l '. This

sci/liug, is valitl tn all sulI_ciently large Rt'yllolds mmllwrs including [hose ciTl'l'(,,'.4l)Olld-

in_ 1(7 lhe upper I)rmwl_ ()f t]w ll(qllI'ill stal/ilily crave. 5Im_kbadi ct _fl. (1993) point

out that [lie inilial l)mmm'tric resonant interaction firsl }/('c,Tmes significanl ill llw

vicinilv of (and ill sonic cnst',_ d()WllSll't'alll Of) lllc Ul)l)er I)l'allt'h in virlually all sul)-

hm'n_Tnic ll'illlSil ](711eXlTerim,'lltS carri('d out t_/dale. They ills() llt/l:(, that it occm's at

r_'lativi'ly small vnlue> ,71 ill,' frequency l)armneter 2_'f.-._/"lr.,. 1_¢' _'- 0 "12 t/rt'smual)ly

}T(,v;_t>,l,. as the_n'v su/_(.sls, the relative slrCllgl}_ of this il_tcral'lion illCl'('ascs wiIh

,h'c,easing rr. The l)r(','--;{'lll aS Vllll)loli(' t h(_ol'y, which holds at small vahtes of or. should

t lwret}_re provide _/ rcas_,nal>h' d(_scrii)tion of this l>henon_enon.

The classical higlt-l-h'ynohls-lmmller aSyllllltotic s, llldi,m for lhe lqlller ])ranch of

the neutral stifllilitv curve (lhqd 19(i6) is lhe reh,vanl solutiou in the inilial linear

;-/lid llon-il_lerac!il_g sl age. This solution is basically illViSci([ except for a thin viscous

wall layer anti a relal ivch lhin critical layer which is asylnl)lOl icalh" disl in('t from the

wall layer. The lowesl-<>rdcr criti(:al-layer i,quation corr('sl)Onds to a balance ])('lwt'tql

rot,an-[low convcclion rim] viscou.', diffusion cffe,.:ts.

:ks in l lw g cl|eral cas,, (liscussed al>ove, tile tirsl ,.o,lltI inleractions occur within

t tit' critical li_vt,r _,m'c lh_, liu(,ar plane-wave anllllit u&' I)('('olnes sufhcienlly larg,'. 17ut

silwe ! hc lowest-ord('r criI ical-hlytw (!qllal it)lib llOW ('orr(,,'-;l)_)ll(t [_7 it balance ])elwt,(,n

linear ('onvt'ct ion anti visc<ms (litt'usion effects, t lw olTlique inslallility-wave anllIlil u(h'

is dolt'trained 17v lh(' xisc()us crilical-laver aml)lilt_de equat i,m (6.6). th)w(,ver, this

equati(ni, togeth,'r wilh equation (6.2), shows thal lilt' o}Tlique-nlodC growth lale

(d:l/dS")/A C¢)lltillll('S It7 illCI'O_ISC aS the ins_atTility waves ])rol/a_att, dOWllSt.roalll., so

that ILL(' non-eqlfilil/riunl (or /rowtll) effects, whit'h arc missing in the lowest-order

critical-layer equations, nmsl eventually come into play causing equation (6.6) lo
become invali, l.

hl fact. eqmllious (6.2). (6.6) and (6.7) imply that (('talk 1971: \Vundrow _'/ rzl.

1993)

( --3 eXl,(_,,.i))as,i'----)c."- _' . ((i._).']_ (_' eXl)(iTr/-I (!x l) L:.i'+ 4t,_,,.

wilt'r(' ("u is ;I real ('t)llSlitllt : _.V(' h}tv(' ('h(/,'SIql Ill(' origiu of tilt' coordinates so |1t:.1|

A,, - t,xp(£,,.i'), (6.!))

and. for siml)licity, we assure(' thai _ is real.

N_7t ice lhat equation (6.8) does not r('dlWe to lhe ]inlitillg forln of eqmltitm (6.1) as

A _ _c. which means lhal the limits A _ _c and .? _ ",c cmm_71 lTe il|Iercllanged and.

l'hil. 7}_zns. h'. ,%_'. L(_m/. :\ (19!15}
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consequently, that there must be some intermediate solution that (!o1111(,(%,'.-;asS, ill p-

totic solulions (6.4) and (6.8). In fact, \Vumh'ow et al. (1993) show that apl)roxima-

tiou (6.6) becomes invalid when k) = O(ln X2/:_) and that lhe non-equililwium ¢,ff(,cls

t)ecome of the same or(hw as the viscous effects for larger values of d'. at which point

the flow begins I.o evolve on the faster scale

i/" = "_ 1"_:_ ( ;}-" H0,,-1 In _'-'/:_)

whol'(_

= ),2/:_:i:_, (6.10)

1
:_!1 z d: - _- In A2/:_ (6.11 )

/';Ih

is an al)l)rol)riat.ely shifted coordinate on the )-scah,, and the oblique-mode aml)lilud¢'
is determined t)y the flflly non-eqnilibrimn equation (6.1), lml with J]_(.2') treated as

a slowly varying function of 5" and the linear growth term treated as a higher-order

effect. The relevant solution has the wKm form (Gohlstein 1994)

_)/ J'I
.4 = b't/,exp(X f_

.l_

where the prime denotes differentiation with respect to d', q = _,/k0, b is determined

bv lhe transcendental equation

:2<'
:_ exl)(-- _( :_ 2b(d:l )()C 2 d(, (6.13)b(d:, ) = _i0(5:l )

1
A - =A,

A

and ('0 is a real constant.
:1 ;i

Notice that _4_,--_ 0, b _ _:t_ and, coIlsequently thai

A_C'_'(:l)q_/Y%'exp(irr/4)exp £J:1+4 I'm (exI)(£'"'J:') 1) , asJ'l 9c,

(6.15)

which means that the solution (6.12) will match onto the asymptotic eXl)mtsion (6.8)
of thc solution t,o the viscous-limit equation (6.6) if we take

= %', ,,xp ( ). 1<d.
\ 4k,},

This shows that the critical-layer dynamics are eventually controlled by non-

equilibrimn (or growth-rate) efli_cts, even in the Blasius boundary layer, and that

the mfitbrmly wdid solution for the instability-wave amplitude is ultimately deWr-

mined by non-equilibrimn equation (6.1) and not by the viscous-limit equation (6.(i).

Figure 4 is a plot of the oblique-mode growth rate as calculated from the' full

non-¢,quilibrium (_luation (6.1) for various values of the nearly constant scaled l)lan¢_ -
way(' amt)litud(' A.. The straight line is the result obtained from viscous limit t'(tua-

lion (6.6). Notice l}lal, the non-equilil)rimn growth rates are consistently lower then

lhe corrcst)onding equilibrimn values, which might, as pointed out l)y Khokhlov

(1994), jus! ext)lain the discrepancy between the growlh rates t)rediclcd t)y the clas-

sical ('raik-typc theories alltt those observed experimenta.lly.

Phd. 7'tvz_,s. H. .%.. L..d. A (19!15)
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F'igur_' ,1. Oblique mode growth rate as a fimction of scaled plane-wave amplitude. (Prepared
by Dr Sang Soo Lee.)

7. The full resonant-triad interaction

_ Equations (6.12) and (6.13) show that the oblique mode continues to grow (when
A_ is given by equation (6.2)) aim must therefore eventually become large enough to

not only react back on the plane wave but also interact nonlinearly with itself. The
plane wave and oblique mode will then both evolve on the fa_st.er scale Y' as defined

in equation (6.10).

The simplest way to show this is to notice that the viscous parameter _ can

be scaled out of the general equations (3.2) and (3.3) by introducing the scaled
dependent and independent variables (6.10), (6.14), along with elo -= Ao/A 4/a, and

then replacing the linear growth rates k and k0 by the sealed growth rates k/_l/a and

k0/A1/a respectively. Then, aside from the vanishing of the linear growth terms, the
resulting equations will remain mmhanged in the liinit _ --+ vo, with k (as defined

by equation (6.5)) and the barred variables held fixed. These latter equations do

not possess solutions that satisfy the liimar upstream boundary conditions (3.4), but
they do possess solut.ioIlS that satis_" the alternative conditions

,4 -, 5 (c'' exp(iTr/4) exp(b02), ,40 ---, 1. as y --, -vc,, (7.1)

where

a (-2 exp(-(a _ 2bo(.)d(., (7.2)bo =-

and therefore nmtch onto the a'l ---+0 limit of the parametric resonance solution (6.12)
and (6.13) and the linear plane-wave solution Ao = exp(k05"l).

The previous results show that these latter solutions match onto an intermediate

viscous parametric resonance stage (which is governed by equation (6.6)) and, con-

sequently, onto the same upstream boundary conditions as equations (6.9) and (6.6)

(i.e. equation (3.4) with the - replaced by *) provided, of course, that

ii tm = o(_q/6 exp(-3_2/a/4£-o_)).

This means that the fiflly interactive stage will be governed by the full non-

equilibrium equations (3.2) and (3.3) if the oblique modes are exponentially smaller
than the plane wave at. the start of resonance ewm in the Blasius boundary layer.
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The smaller linear growth rate of the oblique modes could easily cause this sit ,ration

to occur even when all the lno(tes have t.tw same amplitude at tilt, start of the

linear stag('.

We now return to the general resonant-triad equatiolls (3.2) and 13.:1). The signifi-

cance of the various terlns in e(tlmtion (3.2) has ah'eady beell discussed. The r(!levant

kernel functions are given by (15.1) and (6.3). However, we have not, as yet, discussed

the nonlinear terms in equation (3.3). They a(:colmt for the back reaction of the

oblique mode on the plane wave with the first group i'el)resenting a kind of mutual

il_teraction. The relevant kernel flmetions are given t)y Gohtstein & Lee (1992) and

Mallier & Maslowe (1994) ill the inviscid linlit, and t)y Wu (1991) ill the general case.

The last t ernl in equation (3.3), which is quartic ill the oblique-nlode aml)litudes.

does llot involve the plane-wave amplitude at all. The early, i.e. finite Rt,ynol(ls-

lmlnber-type, analyses of the resonant-triad interaction (see, for exmnl)le, Craik

(1971) and other ref(_rences) involve a corresi)on(ling t)ack-rea(:ti()n t(,rm that is,

however, only quadratic in the ot)lique lno(te amt)litudes. The kernel flnwtion for

this last term (of equation (3.3)) is also given t)y Gol(tstein & Lee (1992) and Mallier

Maslowe 11994) ill the invisci(1 limit and 1)y \Vu (1994) ill the general case.

8. Concluding remarks

In most t)oundary layer flows, it, is the obli(tue-nlode instability wav(,s that ul-

timately exhibit the lnost rapid growth either (lirectly fl'om the initial linear

stage or indirectly tlu'oug}l an iiltelune(liate paranmtric resolmnc(, stage. The cu-

bic self-interactioll between the obliqlm-nlo(te instability waves is one of the firsl

strictly nonlinear intera('tions to conw into t)lay as tile instal)ility waves ev()lve down-

stream ill such flows. This interaction can have a (lominal_t effect on Ill(' subsequent

instat)ility-wave developnlent producing a l()cal singularity (and c()nsequ(mlly ex-

plosive growth) at a finite downstreanl position ill the inviscid limil and s()nwtim('s

producing viscous decay when viscosity is t)resellt (Gol(tstein 1994: \Vu 1993).

The more or less general case is descrit)e(1 1)y equation (3.1), or 1)y (,(tuati()ns (3.2)

and (3.3), trot det)cn(ling on the initial amplitude ratio and the external t)arameters,

various limiting forms of these equations can apply to different regions of" the flow

giving rise to a wide variety of diff(,rent phenomena. The nonlinear interaction also

t)ro(tuces a spanwise varial)le mean-flow change ill the linear region out si(h, t he ('rit ical

layer. It is of the same order as the ot)lique-mo(le instability waves ill Ill(' inviscid

case, but Call be even larger than these ill the strongly viscous ease (Gol(tstein 1994).

The author thanks Professor i2. E. Kelly fl)r first suggesting that thrce-(timensional nonlinear

critical layers would t)e scientifically interesting, Professor F. T. Smith for suggesting thai the
resonant-t riad analysis bc contimwd into the fully coupled stage, and his colh,agu('. [)r Sang Soo

Lee, for preparing tigure 4. The author also thanks his colleagues. Dr Sang So() L(,e. Dr David

\Vun(lrow, Dr Lennart thdtgrcn. Dr Reda Mankl)adi and I)r Slewar! [,eil) for their hell)ful
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